miércoles, 10 de noviembre de 2010

Logneper de dominio real.

Para todo x en Reales, logneper(x) =
  • indefinido si x=0
  • logneper(x) si x>0
  • logneper(-1) + logneper(-x) si x<0
La demostración de que logneper(x) = logneper(-1) + logneper(-x) para todo x<0 es:

Para x<0, logneper(x) = logneper(1*x) = logneper((-1)*(-1)*x) = logneper((-1)) + logneper((-1)*x) = logneper(-1) + logneper(-x)  [c.q.d.]

Nota: se ha utilizado la ecuación logneper(a*b) = logneper(a) + logneper(b).

No hay comentarios:

Publicar un comentario